Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Chem ; 64(24): 18010-18024, 2021 12 23.
Article in English | MEDLINE | ID: covidwho-1616926

ABSTRACT

Most enveloped viruses rely on the host cell endoplasmic reticulum (ER) quality control (QC) machinery for proper folding of glycoproteins. The key ER α-glucosidases (α-Glu) I and II of the ERQC machinery are attractive targets for developing broad-spectrum antivirals. Iminosugars based on deoxynojirimycin have been extensively studied as ER α-glucosidase inhibitors; however, other glycomimetic compounds are less established. Accordingly, we synthesized a series of N-substituted derivatives of valiolamine, the iminosugar scaffold of type 2 diabetes drug voglibose. To understand the basis for up to 100,000-fold improved inhibitory potency, we determined high-resolution crystal structures of mouse ER α-GluII in complex with valiolamine and 10 derivatives. The structures revealed extensive interactions with all four α-GluII subsites. We further showed that N-substituted valiolamines were active against dengue virus and SARS-CoV-2 in vitro. This study introduces valiolamine-based inhibitors of the ERQC machinery as candidates for developing potential broad-spectrum therapeutics against the existing and emerging viruses.


Subject(s)
Antiviral Agents/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Imino Sugars/pharmacology , Inositol/analogs & derivatives , alpha-Glucosidases/metabolism , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Chlorocebus aethiops , Crystallography, X-Ray , Dengue Virus/drug effects , Endoplasmic Reticulum/enzymology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/metabolism , Humans , Imino Sugars/chemical synthesis , Imino Sugars/metabolism , Inositol/chemical synthesis , Inositol/metabolism , Inositol/pharmacology , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Protein Binding , SARS-CoV-2/drug effects , Vero Cells , alpha-Glucosidases/chemistry
2.
Molecules ; 26(10)2021 May 20.
Article in English | MEDLINE | ID: covidwho-1248002

ABSTRACT

Diabetes mellitus (DM) is a chronic disorder and has affected a large number of people worldwide. Insufficient insulin production causes an increase in blood glucose level that results in DM. To lower the blood glucose level, various drugs are employed that block the activity of the α-glucosidase enzyme, which is considered responsible for the breakdown of polysaccharides into monosaccharides leading to an increase in the intestinal blood glucose level. We have synthesized novel 2-(3-(benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides and have screened them for their in silico and in vitro α-glucosidase inhibition activity. The derivatives 11c, 12a, 12d, 12e, and 12g emerged as potent inhibitors of the α-glucosidase enzyme. These compounds exhibited good docking scores and excellent binding interactions with the selected residues (Asp203, Asp542, Asp327, His600, Arg526) during in silico screening. Similarly, these compounds also showed good in vitro α-glucosidase inhibitions with IC50 values of 30.65, 18.25, 20.76, 35.14, and 24.24 µM, respectively, which were better than the standard drug, acarbose (IC50 = 58.8 µM). Furthermore, a good agreement was observed between in silico and in vitro modes of study.


Subject(s)
Acetamides/chemical synthesis , Acetamides/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Thiazines/chemistry , Thiazines/pharmacology , Acetamides/chemistry , Acetamides/therapeutic use , Computer Simulation , Diabetes Mellitus/drug therapy , Drug Evaluation, Preclinical , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/therapeutic use , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Inhibitory Concentration 50 , Molecular Docking Simulation , Structure-Activity Relationship , Thiazines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL